
Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby

Applications
Sophie Kaleba

S.Kaleba@kent.ac.uk
University of Kent
United Kingdom

Octave Larose
O.Larose@kent.ac.uk
University of Kent
United Kingdom

Richard Jones
R.E.Jones@kent.ac.uk
University of Kent
United Kingdom

Stefan Marr
s.marr@kent.ac.uk
University of Kent
United Kingdom

Abstract
Applications written in dynamic languages are becoming
larger and larger and companies increasingly use multi-
million line codebases in production. At the same time, dy-
namic languages rely heavily on dynamic optimizations, par-
ticularly those that reduce the overhead of method calls.

In this work, we study the call-site behavior of Ruby bench-
marks that are being used to guide the development of up-
coming Ruby implementations such as TruffleRuby and YJIT.
We study the interaction of call-site lookup caches, method
splitting, and elimination of duplicate call-targets.
We find that these optimizations are indeed highly effec-

tive on both smaller and large benchmarks, methods and
closures alike, and help to open up opportunities for fur-
ther optimizations such as inlining. However, we show that
TruffleRuby’s splitting may be applied too aggressively on
already-monomorphic call-sites, coming at a run-time cost.
We also find three distinct patterns in the evolution of call-
site behavior over time, which may help to guide novel opti-
mizations. We believe that our results may support language
implementers in optimizing runtime systems for large code-
bases built in dynamic languages.

CCS Concepts: • Software and its engineering → Lan-
guage features; Object oriented languages; Dynamic
compilers.

Keywords: dynamic languages, call-site analysis, splitting,
lookup caches, inlining

DLS ’22, December 07, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 18th ACM SIGPLAN International Symposium on Dynamic
Languages (DLS ’22), December 07, 2022, Auckland, New Zealand, https:
//doi.org/10.1145/3563834.3567538.

ACM Reference Format:
Sophie Kaleba, Octave Larose, Richard Jones, and Stefan Marr. 2022.
Who You Gonna Call: Analyzing the Run-time Call-Site Behavior of
Ruby Applications. In Proceedings of the 18th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages (DLS ’22), December 07,
2022, Auckland, New Zealand. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3563834.3567538

1 Introduction
Dynamic languages such as JavaScript, PHP, Python, and
Ruby are used in industry to build a wide range of systems
including application backends. Their dynamic language fea-
tures support rapid application development, but require
run-time compilation and optimization to achieve good per-
formance, because the details needed for optimizations are
only known during execution.

Coding practices often encourage small methods and code
reuse in various forms. Together with paradigms such as
everything is an object [7, 13] or everything is a call [10],
method or function calls often end up dominating an appli-
cation’s behavior. Having many calls to many small meth-
ods can be expensive if calls are not optimized. Fortunately,
widely adopted optimizations such as inline caches [9] mini-
mize lookup overhead by caching the target functions, and
inlining, which replaces a function call by the function’s
implementation in the caller, avoids the call overhead and
enables further optimizations.
These optimizations rely on the assumption that the be-

havior of an application stabilizes over time. In the context of
calls, it means that after a while a given call-site is assumed
to always invoke the same set of targets. However, other
research suggests that applications may undergo distinct
phases, each of which may show different behavior [14, 15].
Since dynamic languages are used for increasingly large
applications with millions of lines of code, for instance by
GitHub and Shopify for their huge Ruby-on-Rails applica-
tions [3], or Instagram with millions of lines of Python code,

1

https://orcid.org/0000-0002-9817-1494
https://orcid.org/0000-0003-4683-9883
https://orcid.org/0000-0002-8159-0297
https://orcid.org/0000-0001-9059-5180
https://doi.org/10.1145/3563834.3567538
https://doi.org/10.1145/3563834.3567538
https://doi.org/10.1145/3563834.3567538

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

we are interested in verifying whether these assumptions
are still likely to hold.

Language implementations such as TruffleRuby [19], which
builds on the Truffle language implementation framework [21]
together with the Graal just-in-time compiler [20], combine
inline caches with splitting, i.e. the cloning of methods with
fresh lookup caches, and optimizations to avoid a duplication
of call targets. However, the interplay and effectiveness of
these optimizations have not yet been studied in detail.

Ruby is used for many different applications, ranging from
personal blogs to large industrial codebases used for instance
by AirBnB, GitHub, Shopify, and Stripe. In this paper, we
analyze the call-site behavior of a corpus of Ruby bench-
marks, which were in part built to guide the optimization of
Ruby implementations for and by Shopify [4], the Ruby, and
the Ruby-on-Rails communities. These benchmarks include
Rails-based applications, document-processing systems, a
NES emulator, and others. Specifically, we study the effec-
tiveness of existing optimizations, how they interact, how
lookup caches evolve over time and whether they show be-
havioral patterns, and whether there are differences between
the uses of methods and closures. For this work, we instru-
mented TruffleRuby to collect data, resulting in a corpus of
analytical data which we believe will help language develop-
ers to identify new opportunities for optimizations.

The key insights described in this paper are:

– Benchmarks categorized by how their lookup caches
respond to existing call-site optimizations;

– Industrial Ruby benchmarks tend to be larger and dis-
play a higher degree of polymorphism. The majority
of calls are monomorphic, as previously reported for
other languages in the literature;

– Elimination of target duplicates and splitting are very
effective at reducing polymorphism. However, over-
splitting is frequent and has additional run-time cost;

– Methods calls are more frequent than closure calls, but
there is a slightly higher proportion of closure calls
that are polymorphic;

– Run-time call-site behavior can be characterized in
three distinct patterns that may help guiding future
optimizations.

The main contributions of this paper are:

– A benchmark set consisting of both Ruby benchmarks
used for research, and larger industrial Ruby bench-
marks.

– A characterization of benchmarks according to their
degree of polymorphism to study the relevance and
impact of optimizations on call-sites in each category;

– An analysis of the impact of two existing optimizations
on method and closure call-site behavior;

– An analysis of the evolution of call-site behavior at
run time.

Since starting this work, the TruffleRuby developers have
used our feedback to avoid unconditional, and thus overly
aggressive splitting of blocks, without harming performance.

2 Terminology and Background
This section gives a brief overview of TruffleRuby, and the
terminology and optimization strategies used in modern dy-
namic language implementations. We also detail the different
invokable objects in Ruby, which we will distinguish in our
analysis of call-site behavior.

2.1 TruffleRuby, Truffle, and Graal
TruffleRuby is a Ruby implementation based on the Truf-
fle language implementation framework [21] and the Graal
just-in-time compiler [20]. TruffleRuby is implemented as an
abstract-syntax-tree interpreter, which uses partial evalua-
tion at run time to achieve state-of-the-art performance at the
same level as the V8 JavaScript engine on the AreWe Fast Yet
benchmarks [12]. It is fully compatible with Ruby and able to
execute Ruby’s native extensions, which allows it to run com-
plex applications, for instance those based on the popular
Ruby-on-Rails framework.

2.2 Terminology
In our analysis, we distinguish call-sites and call-targets to
characterize the call-site behavior over time.

A call-site corresponds to a pair of (Location, Symbol), the
symbol being the name of the method called. For instance
the code foo.bar() on a specific line is the call-site for the
method bar, applied on receiver foo.
The location of a call-site is typically tied to its lexical

location in the source code. However, methods built into the
language runtime do not have a lexical location. Thus, when
such methods call other methods, there is no specific code
location associated with the call-site. We refer to this kind
of location as a virtual location, and use the address of the
runtime internal representation for this call-site.

A call-target is the method actually executed. The same
call-site can be associated with different tuples of (Receiver
type, Call-Target), the receiver being the object on which the
method is called (the object foo in our previous example).

Finally, we refer to call-site behavior to characterize the
state of a call-site at run time. In this paper, we use its lookup
cache state (see Section 2.3) and content (i.e. the run-time
types of its receivers) as a proxy for its behavior. We use this
information to characterize a call-site and observe how it
evolves at run time.

2.3 Call-Site-related Optimizations
Lookup caches, splitting, and inlining are important opti-
mizations used in dynamic language implementations. Truf-
fleRuby relies on these optimizations for its interpreted and
just-in-time compiled performance. While lookup caches

2

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

minimize lookup overhead and profile call-site behavior,
splitting and inlining reduce the number of call-targets at a
call-site to improve performance by reducing the polymor-
phism. We describe them and briefly detail how they affect
call-site behavior.

Lookup caches as described by Hölzle et al. [9] are asso-
ciated with call-sites and aim to avoid repeated and possibly
time-consuming dynamic method lookups. Lookup caches
typically hold all call-targets observed at a call-site, up to
a certain limit. Thus, instead of a costly traversal of a class
hierarchy, possibly performing hash lookups in a method
dictionary, the runtime ideally needs to only search linearly
through a small array that stores the previously seen receiver
types and call-targets.
Lookup caches are usually described as a monomorphic,

polymorphic, or megamorphic, depending on how many
entries they hold, or more precisely, how many different
(Receiver type, Call-target) tuples the call-site has observed.
Depending on the state of the cache, the implementation
strategy used may change. A monomorphic cache contains
exactly one entry, which is usually the best case since a
method call only needs to confirm that this is the right entry
in which case it can be executed immediately. Monomor-
phism is often also a criterion for inlining, and thus desirable
to enable further optimization.

A cache turns polymorphic when it holds more than one
entry, up to a certain limit. When this limit is exceeded,
the cache is deemed megamorphic, which in most systems
means that there is no further caching at this call-site, since
too many (Receiver type, Call-target) tuples make caching
ineffective. The maximum number of entries in a cache is
system-dependent. In TruffleRuby, lookup caches turn meg-
amorphic when a ninth entry is added.

Typically, the speed of call resolution depends on the num-
ber of entries in the cache, the cache implementation, and
the current context. TruffleRuby uses linked lists for lookup
caches and new entries are added at the head of the list. In
the worst case, the receiver does not match any of the pre-
viously seen receiver types, which means that after the full
cache traversal, a full method lookup has to be performed.

In this paper, we use the content and state of lookup caches
to characterize a call-site’s behavior, as it is a starting point
for the other call-site optimizations.

Inlining [18] is an optimization that replaces a method
call with the body of the call-target. This avoids the call
overhead, but perhaps more importantly, in the context of a
just-in-time compiler it enables compiler optimizations by
enlarging the compilation unit.

Inlining is typically considered if a call-site observes only a
single call-target, that is, if the lookup cache is monomorphic.

In TruffleRuby, inlining may happen during JIT compila-
tion. In some cases, TruffleRuby does it already in the inter-
preter at the AST level, for instance for builtins and specific
methods of the core Ruby library (see Section 2.4).

Splitting [9], also called method cloning, duplicates a
method in the context of the caller. The new copy starts with
empty lookup caches to monomorphize potentially polymor-
phic call-sites. It is similar to inlining, but does not embed
the code and thus, keeps the two compilation units separate.

In TruffleRuby, splitting is done at the method level when
a method is called. It copies an uninitialized version of the
target method for use at that call-site. This means a call-site
has its own copy of the call-target, and all call-sites inside the
new copy have uninitialized lookup caches. Ideally, splitting
prevents these caches from becoming polymorphic.
During a method call, TruffleRuby, or more specifically

the Truffle framework, checks whether a method contains,
e.g., polymorphic call-sites. It also checks a flag for splitting
requests: this is used to propagate splitting up the caller
chain.When a call-target has several call-sites, e.g. a standard
library method that is called in many places, the source of
polymorphism is assumed to come from the different call-
sites and only the called method is split. If there is only a
single call-site for a call-target, the polymorphism is assumed
to come from higher up in the call chain, and the caller
method is marked for splitting.
In the example in Figure 1,1 capitalize() on line 2 be-

comes polymorphic after being indirectly called on a Symbol
and String from lines 10 and 11. In this case, splitting is prop-
agated up the call chain until either a call-target linked to
several call-sites is encountered or a propagation limit is
reached (five callers in Truffle). In this example, kapitalize
is marked for splitting so that the calls on lines 10 and 11
will get separate copies.

Additionally, TruffleRuby will force splitting for some
known methods in the core Ruby library, so that they spe-
cialize in the context where they are used (see Section 2.5.1).

2.4 Methods and Closures in Ruby
In Ruby, similarly to other languages, closures are frequently
used in addition to normal methods. In the context of under-
standing call-site behavior, it is useful to distinguish the two
since they may be used differently by programmers.
Methods are defined on a class and, when used, have a

receiver that may be lexically explicit (as in foo.bar()) or
implicit (as in puts "foo", where the receiver of puts is the
top-level main object). While most methods are defined in
Ruby code, some are builtin and implemented in the Ruby
implementation. This includes some methods of Ruby’s core
library. In TruffleRuby, these builtins are implemented in Java
and include for instance methods on Array and TrueClass.
1Adapted from https://github.com/oracle/graal/blob/master/truffle/docs/
splitting/Splitting.md

3

https://github.com/oracle/graal/blob/master/truffle/docs/splitting/Splitting.md
https://github.com/oracle/graal/blob/master/truffle/docs/splitting/Splitting.md

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

1 def modify(arg1)

2 arg1.capitalize ()

3 end

4
5 def kapitalize(arg1)

6 modify(arg1)

7 end

8
9 def callsKapitalize ()

10 kapitalize("foo") # a String

11 kapitalize (:bar) # a Symbol

12 end

(a) Snippet of code triggering splitting

(b) Impact of splitting on the application’s structure

Figure 1. Code example that requires recursive splitting, i.e.
splitting is propagated up the call chain so that the result-
ing call tree gets two distinct, specialized branches: one for
Symbol and one for String.

TruffleRuby will inline many of these builtins at the AST-
level to avoid the call overhead, and allow specialization in
the context of the caller method.
Closures are called blocks and exist in two flavours in

Ruby, as procs or lambdas. Lambdas are similar to standard
methods but check their arguments more strictly. Procs are
more forgiving of mismatching arguments. Block literals
in the code instantiate as procs. In this paper, we will not
distinguish these flavours further.

2.5 Call Optimization in TruffleRuby
In addition to lookup caches, inlining, and splitting, Truf-
fleRuby uses further optimizations that affect method calls.

2.5.1 Eliminating Call Target Duplication Classic look-
up caches contain entries of (Receiver type, call-target) (see
Section 2.3). In Truffle, method calls are realized with the
framework’s call node (called DirectCallNode), which takes
the call-target and implements splitting and triggering of
the just-in-time compiler. So, in Truffle languages, a lookup
cache would contain a (Receiver type, call node) tuple.

This approach, however, does not account for code reuse
in inheritance hierarchies and Ruby features such as mixins
or class patching. With these features being widely used, it is

common that lookups on different types of receivers resolve
to the same call target, such as in this snippet of Ruby code:

1 list_of_ints = [68719476736 , 2]

2
3 for e in list_of_ints do

4 e.ord()

5 end

The two elements of list_of_ints are both integers, but
the first is an instance of the class BigNum and the second a
FixNum. They share the same ord implementation, i.e. the
same target. This call-site is polymorphic if we consider only
the receiver’s class, but it is monomorphic when considering
the target.

TruffleRuby solves this by introducing a two-level caching
strategy. The first level is equivalent to the classic cache and
contains (Receiver type, call-target) tuples. The second level
is used to eliminate duplicate call-targets and contains (call-
target, call node) tuples. This means that there is only a single
call node per call-target, instead of possibly multiple call
nodes for the same call-target, as in the classic design. This
de-duplication is beneficial, for instance to enable inlining.

2.5.2 Additional Splitting in TruffleRuby TruffleRuby
adds further splitting strategies on top of the ones in Truffle.

By default, closure application sites split the closure’s call
target.2 Thus, all entries in the lookup cache at an application
site contain call targets that can fully specialize in the context
of the caller.
Some methods in Ruby’s core library are treated simi-

larly and are always split, for instance Array.insert and
String.tr. For some other methods, splitting is disabled,
typically to manage the cost/benefit of splitting.

3 Methodology
This section describes the benchmarks which we use to con-
duct our call-site behavior analysis and the methodology
used to gather the data for our analysis.

3.1 Selection of the Benchmark Set
We use benchmarks from the AreWe Fast Yet project [12],
which contains 9 microbenchmarks and 5 slightly larger ones
that were designed for comparing performance between
different programming languages. We use these benchmarks
because they are small, well understood, and allow us to
verify the results of our analysis.

In addition, we use benchmarks from the TruffleRuby and
YJIT projects [4]. These are larger application-level bench-
marks collected to guide the development of optimizations
for the two corresponding Ruby implementations. YJIT’s
benchmarks are of particular interest since they are meant
to resemble the real-world workloads of Shopify.3

2After discussing our results with the TruffleRuby team, this has been
changed, and closure calls rely on Truffle’s normal splitting.
3Shopify funds YJIT’s development.

4

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

These benchmarks include web server applications such
as ERubiRails and BlogsRails, which are built on top of the
large Ruby-on-Rails framework and rely on template pro-
cessing. Since Ruby is often used for such web applications,
they represent a major use case and optimization target. In
addition, we use OptCarrot (a NES emulator), AsciiDoctor (a
text processing system), HexaPDF (a PDF render), the Jekyll
static site generator, and various other benchmarks built
from typical parts of large e-commerce applications.

3.2 Behavior Monitoring and Analysis
We use an instrumented version of TruffleRuby to capture
the data for our call-site analysis. This instrumentation logs
both methods and closure activations, and is triggered on
each call. Exceptions are detailed in Section 4.7.

Trace description. Figures 2–4 show excerpts of an exe-
cution trace for the DeltaBlue benchmark. Each line of the
trace represents one call. The first number is the number
of the line in the trace, for instance 493 on the first line
of Figure 2. The second element is the lexical location of
the call (./deltablue.rb:47 is the file name and line num-
ber). The third element is the symbol name (execute), the
fourth (EditConstraint) and fifth (EditConstraint) are
the receiver type and the type in which the call-target is
actually defined. We use this distinction to differentiate be-
tween receiver and target types (see 2.5 for a definition, and
Figure 3 for an example from a trace). The sixth item 1397
is an ID that uniquely identifies the virtual call-site: we use
this information to monitor whether splitting occurred for
the call-site. Lastly, the last item 1894 represents the lexical
call-site ID. This ID is required because the lexical location
fetched by the parser operates on the granularity of a line.
This means that, without this ID, our instrumentation would
have treated two call-sites present in the same line with the
same symbol as one call-site being called twice.
We use R to analyze these traces, compute statistics, and

generate summary plots and tables.4 The results of the anal-
ysis are described in detail in Section 4.

Behavior reconstruction. We use the trace to assess the
state of the call-sites’ behaviors and to identify the impact
of call-site optimizations. The lookup cache state is recon-
structed by counting the number of different receivers at
a given call-site. For example, in Figure 2 the call-site of
execute, located at ./deltablue.rb:47, has been called
three times, with two different receivers, EditConstraint
and EqConstraint: we conclude this call-site is polymor-
phic, and that its lookup cache has two entries.

We identify the potential target duplicates in the cache by
comparing the types of the receiver and the types of the tar-
get. Figure 3 shows a call-site that has two different receiver

4The instrumented TruffleRuby and the analysis scripts in R are available
at https://github.com/sophie-kaleba/ruby-cs-analyser.

A case of receiver polymorphism

Figure 2. The lexical call-site at line 47 of the file
./deltablue.rb is polymorphic with two entries for
EditConstraint and EqConstraint. The call logged on line
518 did not modify the cache state.

A case of target duplication in the cache

Figure 3. This call-site would be considered polymor-
phic if we only considered the type of the receivers:
StayConstraint and EditConstraint. The call-site can be
monomorphized with the knowledge that both receivers re-
solve to the same type of target UnaryConstraint.

A case of splitting

Figure 4. This call-site has been split, as evidenced by the
two different call-site IDs 1031 and 1138. It means that the
lexical call-site ./deltablue.rb:47 is linked to two virtual
call-sites.

types, StayConstraint and EditConstraint, which means
that its lookup cache would have two entries: one for Stay-
Constraint#is_satisfied and one for EditConstraint-
#is_satisfied. However, these two receivers resolve to the
same target type UnaryConstraint: this target duplication
in the cache can be avoided, monomorphizing the cache. We
consider such a case to be relevant only when it has an im-
pact on the lookup cache status: usually, it helps to reduce
the degree of polymorphism (see Section 4.2).

In Figure 4, we identify the call-site ./deltablue.rb:47
as split: it is tied to two different virtual call-site IDs, which
means it has been split once. This allows us to determine
the status and evolution of lookup caches, distinguishing
different virtual call-sites (see Section 4.5).

Bootstrap and Application phases. Initialization phases
often differ from the rest of the execution, for instance, be-
cause objects and classes need to be loaded and initialized. In
our analysis, we distinguish bootstrap and application phase.
During the bootstrap phase, the TruffleRuby core libraries
are loaded and initialized. The application phase starts when
the runtime starts to load and execute the user code. We an-
alyze the impact of the bootstrap phase on call-site behavior
in Section 4.6. Where not otherwise stated, we include data
from both phases.

5

https://github.com/sophie-kaleba/ruby-cs-analyser

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

4 Results
Our analysis first examines the general metrics of the bench-
mark set. It then focuses on those with megamorphic call-
sites, as well as on those displaying a high proportion of
polymorphic call-sites, to detail the impact of optimizations,
call-site behavior over time, and the differences in use of
methods and closures.

4.1 General Metrics of the Benchmarks
As mentioned before, we aim to include larger real-world-
inspired workloads in our analysis.
To measure the size of the code in question, instead of

taking a static line count, we count the number statements
(Stmts) that are loaded during execution as well as the num-
ber of statements that were executed. This means we also
count the code of Ruby’s standard library, but ignore code
that is not loaded or executed.
The first columns Stmts and Stmts Cov. in Table 1 show

the number of statements per benchmark and the fraction
executed. The columns Fns and Fns Cov. give the number of
functions per benchmark and the fraction of these functions
that were executed. The column kCalls contains the number
of calls performed at run time, followed by the proportion of
these calls that were polymorphic or megamorphic. The last
two columns give the corresponding static count of call-sites.
As can be seen in this table, with BlogRails and ERubiRails,
we included benchmarks with nearly 120,000 statements,
both of which execute about 45% of the statements at least
once. The next largest benchmark is MailBench with about
32,000 statements of which 40.2% are executed. The smallest
benchmark is Sieve. While it has merely 26 lines with state-
ments, Ruby loads files with 15,699 statements of which 29%
are executed at least once. The remaining benchmarks are in
the range of about 15,000 to 27,000 statements, with around
30-40% of the statements being executed.

For all benchmarks the coverage of functions and methods
is in the range of 19-38%. The Rails benchmarks are the
largest with around 37,500 functions of which 35-38% are
executed.

From the perspective of call-site behavior, we can already
see in the Poly+Mega call-sites column that the larger bench-
marks usually have a larger number of call sites that are
polymorphic. On the other hand, many of the classic bench-
marks have very few polymorphic call-sites (usually less
than 1%).

Research Question 1. Can these benchmarks be divided in
distinct sets based on their call-site behavior?

Observation 1. Based on the polymorphism of call-sites that
can be seen in Table 1, we can divide the benchmarks into
three sets.Megamorphic benchmarks have at least one call-
site with more than eight receivers (the size of a TruffleRuby
cache); polymorphic benchmarks have more than 1.5% of

their call-sites polymorphic; and the remaining benchmarks
are minimally-polymorphic.

The tables show the benchmark set in the order of to these
three categories: the first category contains the megamor-
phic benchmarks e.g. BlogRails. See also Table 2 indicating
the megamorphic calls directly. Next is the polymorphic ca-
tegory with 5 benchmarks including DeltaBlue, and lastly
at the bottom of the table are the minimally-polymorphic
benchmarks. By separating the benchmarks, we can focus on
the ones with stronger polymorphism. Thus, we will exclude
from now on the minimally polymorphic benchmarks from
the tables, i.e. AreWe Fast Yet’s microbenchmarks, a number
of image-processing benchmarks, and smaller benchmarks
from the TruffleRuby benchmarks. The full tables can be
found in Appendix A and B.

Research Question 2. What proportion of call-sites are
monomorphic?

Observation 2. In BlogRails and ERubiRails, 97.7% of the
call-sites are monomorphic. They have the largest code-bases
of our set and most of the polymorphism can be explained by
code re-use, e.g. use of libraries.
In Sinatra and HexaPdf, which are smaller than BlogRails

and ERubiRails, around 95.7% of call-sites are monomorphic.
For the other benchmarks, about 98.2% are monomorphic.

The results for the other benchmarks, with about 98.2%
being monomorphic, are in line with previous reports in the
literature, which found about 98% of the call-sites in large
benchmarks to be monomorphic[17].

4.2 Impact of the Existing Call-Site Optimizations
on Call-Site Behavior

As described in Section 2.3 and 2.5, TruffleRuby uses splitting
and eliminates call target duplication to optimize call-sites.
Since previous studies have not considered how effective
these optimizations are in combination, we ask the following
research questions:

Research Question 3. To what degree does eliminating call
target duplicates reduce polymorphism?

Research Question 4. To what degree does splitting reduce
polymorphism after eliminating call target duplicates?

To answer these questions, we focus on the benchmarks
in our megamorphic and polymorphic category and check
first, whether the caches contain target duplicates, and then
whether eliminating the duplicates leads to a smaller num-
ber of polymorphic calls. Table 2 shows the results: for each
benchmark, it lists the number of polymorphic andmegamor-
phic calls before eliminating any target duplicates (columns
two and three). It also lists the percentage by which the
number of polymorphic and megamorphic calls decreased
because of the fewer entries in the caches after removing

6

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Table 1. Around 38% of all statements including libraries
are executed, which equates to a 27% coverage across all
methods. 46 benchmarks are megamorphic, from a total of 74
benchmarks: the majority of these are industrial benchmarks.
The *-suffixed benchmarks have been aggregated due to their
similar behavior, and their values have been averaged.

Benchmark Stmts
Stmts
Cov. Fns

Fns
Cov. kCalls

Poly+
Mega.
calls

Exec.
call-
sites

Poly+
Mega.
call-
sites

BlogRails 118,717 48% 37,595 38% 13,863 7.4% 52,361 2.3%
ChunkyCanvas* 19,279 32% 5,082 20% 11,323 0.0% 1,816 1.0%
ChunkyColor* 19,266 32% 5,077 20% 19 2.0% 1,790 1.0%

ChunkyDec 19,289 32% 5,083 20% 21 2.0% 1,809 1.2%
ERubiRails 117,922 45% 37,328 35% 12,309 5.4% 47,794 2.3%

HexaPdfSmall 26,624 44% 6,990 35% 31,246 7.4% 6,872 4.1%
LiquidCartParse 23,531 37% 6,259 27% 87 1.3% 3,065 1.9%

LiquidCartRender 23,562 39% 6,269 30% 236 5.5% 3,581 2.4%
LiquidMiddleware 22,374 37% 5,939 27% 70 1.4% 2,918 1.4%

LiquidParseAll 23,276 37% 6,186 27% 295 1.9% 3,127 2.2%
LiquidRenderBibs 23,277 39% 6,185 29% 385 23.4% 3,466 2.8%

MailBench 31,857 40% 8,392 32% 2,756 3.4% 5,414 3.6%
PsdColor 27,498 40% 7,724 28% 352 4.1% 6,668 1.9%

PsdCompose* 27,498 40% 7,724 28% 352 4.0% 6,678 2.0%
PsdImage* 27,531 40% 7,736 28% 5,509 0.0% 6,677 2.0%
PsdUtil* 27,496 40% 7,724 28% 351 4.0% 6,655 2.0%
Sinatra 31,187 40% 8,492 29% 172 6.9% 5,639 4.4%

ADConvert 21,588 37% 4,771 27% 371 7.9% 3,979 3.1%
ADLoadFile 21,586 35% 4,771 26% 171 13.2% 3,335 2.9%
DeltaBlue 16,292 31% 4,052 21% 13 6.4% 1,738 2.4%
PsychLoad 19,282 36% 4,982 25% 6,232 11.6% 2,412 1.9%
RedBlack 15,909 30% 3,915 20% 42,897 20.3% 1,774 2.9%

Acid 15,703 29% 3,877 19% 9 1.7% 1,445 0.7%
BinaryTrees 15,708 30% 3,876 20% 6,355 0.0% 1,474 0.7%

Bounce 15,979 29% 3,953 19% 16 0.9% 1,457 0.7%
CD 16,386 30% 4,025 20% 75,184 6.2% 1,772 0.7%

Fannkuch 15,729 30% 3,873 19% 10,864 0.0% 1,473 0.7%
Havlak 16,237 31% 4,027 21% 44,901 3.0% 1,710 0.7%

ImgDemoConv 15,776 29% 3,905 20% 3,417 0.0% 1,512 0.7%
ImgDemoSobel 15,818 30% 3,920 20% 3,806 0.0% 1,518 0.7%

Json 16,223 30% 4,024 20% 210 0.1% 1,584 0.6%
List 15,716 29% 3,878 19% 53 0.3% 1,457 0.7%

Mandelbrot 15,730 29% 3,872 19% 9 1.7% 1,437 0.7%
MatrixMultiply 15,712 29% 3,879 20% 100 0.1% 1,473 0.7%

NBody 15,763 29% 3,892 19% 9 1.6% 1,518 0.7%
NeuralNet 15,792 30% 3,911 20% 33,010 0.0% 1,602 0.7%
OptCarrot 18,518 35% 4,450 24% 9,242 0.0% 2,544 1.0%
Permute 15,707 29% 3,875 19% 40 0.4% 1,445 0.7%
Pidigits 15,714 29% 3,873 19% 97 0.2% 1,456 0.7%
Queens 15,716 29% 3,878 19% 23 0.6% 1,449 0.7%
Richards 15,935 30% 3,934 20% 1,553 0.0% 1,584 0.6%

Sieve 15,699 29% 3,873 19% 9 1.7% 1,440 0.7%
SpectralNorm 15,715 29% 3,882 20% 6,441 0.0% 1,479 0.7%

Storage 15,954 29% 3,950 19% 24 0.6% 1,449 0.7%
Towers 15,726 29% 3,882 19% 82 0.2% 1,456 0.7%

the duplicates (columns four and five). Appendix B provides
additional data from a static perspective, showing the impact
of these optimizations on the number of polymorphic and
megamorphic call-sites.
Our results show that up to 93.6% of polymorphic calls

are subject to target polymorphism. Eliminating target du-
plication reduces the number of polymorphic calls signi-
ficantly. The benchmarks that benefit most are OptCarrot,
a NES emulator, and LiquidParseAll, which parses Liquid
HTML templates. OptCarrot had 93.6% of its polymorphic
calls monomorphized. LiquidParseAll had 87.4% of its calls
monomorphized. All of its megamorphic calls have been
eliminated in the process as well.

Almost all of the megamorphic benchmarks see their meg-
amorphic calls turning either polymorphic or evenmonomor-
phic. Four megamorphic benchmarks still experience me-
gamorphic calls after the elimination of target duplicates: the

Table 2. Eliminating target duplicates in the cache is very
effective at reducing polymorphism: It is generally reduced
by around 45%, except for RedBlack and CD that has less
than 8% of duplicates

Number of calls After eliminating
target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 956,515 63,319 -48.8% -99.1%

ChunkyCanvas* 322 98 -80.0% -100.0%
ChunkyColor* 320 98 -79.0% -100.0%

ChunkyDec 322 98 -79.5% -100.0%
ERubiRails 626,535 40,699 -37.4% -98.6%

HexaPdfSmall 1,842,665 479,399 -21.7% -99.6%
LiquidCartParse 821 280 -73.3% -100.0%

LiquidCartRender 12,598 280 -84.1% -100.0%
LiquidMiddleware 747 251 -68.8% -100.0%

LiquidParseAll 5,369 280 -87.4% -100.0%
LiquidRenderBibs 89,866 280 -73.7% -100.0%

MailBench 81,886 12,697 -77.6% -100.0%
PsdColor 14,053 233 -53.1% -100.0%

PsdCompose* 14,053 233 -53.0% -100.0%
PsdImage* 14,062 233 -53.0% -100.0%
PsdUtil* 14,048 233 -53.0% -100.0%
Sinatra 7,909 3,911 -82.8% -94.4%

ADConvert 29,337 0 -58.3% 0.0%
ADLoadFile 22,654 0 -53.5% 0.0%
DeltaBlue 846 0 -33.7% 0.0%
PsychLoad 723,984 0 -85.7% 0.0%
RedBlack 8,718,802 0 -7.7% 0.0%

two Ruby-on-Rails-based benchmarks BlogRails and ERu-
biRails, where the megamorphism is in the HTTP request
routing and in the ActiveSupport library callbacks; HexaPdf-
Small when validating PDF objects during the PDF genera-
tion process; and Sinatra, when compiling newHTTP routing
paths.

Observation 3. We conclude that eliminating target dupli-
cates reduces polymorphism successfully, eliminating mega-
morphic calls almost completely.

Splitting eliminates almost all remaining polymor-
phism. Table 3 is structured similarly to Table 2. The table
shows how splitting impacts polymorphism once target du-
plicates have been eliminated. The Number of splits-column
indicates the number of method copies created. Notably,
the table shows that all remaining polymorphic calls are
monomorphized by splitting.

The benchmarks with a large number of polymorphic call-
sites (see Table 11) usually have a high amount of splitting,
as we would expect considering Truffle’s splitting heuristic
(see Section 2.3). For example, BlogRails and ERubiRails rank
respectively first and second in terms of the number of times
splitting occurred (2163 and 1851 times).
The minimally-polymorphic benchmarks excluded from

Table 3 mostly behave homogeneously: with the exception
of CD and Havlak, our two outliers with a large number of
(polymorphic) calls, they all had around thirty polymorphic
calls remaining, stemming from less than eight call-sites that
were monomorphized by splitting (see Appendix B). Consid-
ering this small number of polymorphic call-sites remaining,
the amount of splitting they experience is however high,
with at least 27 splits occurring. In the following Section 4.3,
we discuss why these benchmarks may experience splitting

7

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

more than twice, even though they had only a few remaining
polymorphic call-sites.

Table 3. The polymorphic and megamorphic calls remaining
after having eliminated target duplicates are almost com-
pletely monomorphized by splitting.

Number of calls After splitting
Benchmark Poly. Mega. Poly. Mega.

Number
of splits

BlogRails 490,072 557 -100% -100% 2163
ChunkyCanvas* 66 0 -100% 0% 43
ChunkyColor* 66 0 -100% 0% 42

ChunkyDec 66 0 -100% 0% 42
ERubiRails 391,997 553 -100% -100% 1851

HexaPdfSmall 1,443,211 2,066 -100% -100% 498
LiquidCartParse 219 0 -100% 0% 107

LiquidCartRender 2,000 0 -100% 0% 207
LiquidMiddleware 233 0 -100% 0% 114

LiquidParseAll 679 0 -100% 0% 136
LiquidRenderBibs 23,633 0 -100% 0% 191

MailBench 18,322 0 -100% 0% 343
PsdColor 6,586 0 -100% 0% 300

PsdCompose* 6,586 0 -100% 0% 300
PsdImage* 6,588 0 -100% 0% 300
PsdUtil* 6,584 0 -100% 0% 300
Sinatra 1,362 220 -100% -100% 297

ADConvert 12,226 0 -100% 0% 236
ADLoadFile 10,525 0 -100% 0% 175
DeltaBlue 561 0 -100% 0% 78
PsychLoad 103,506 0 -100% 0% 78
RedBlack 8,043,472 0 -100% 0% 50

Tables 2 and 3 provide a dynamic perspective on the im-
pact of eliminating target duplicates and splitting on call-site
behavior. We show these two optimizations are very suc-
cessful at monomorphizing polymorphic call-sites, as well
as eliminating megamorphism.
Table 4 shows how the two optimizations influence the

maximum number of targets per cache. The larger bench-
marks have a higher maximum number of receivers for at
least one call site (i.e. the Ruby-on-Rails benchmarks with
at least one cache holding 206 targets). Furthermore, elimi-
nating duplicates significantly decreases the degree of poly-
morphism in the megamorphic benchmarks subset, only few
caches remain polymorphic. Similarly to what we observed
in Table 2, only the most megamorphic benchmarks such as
the two Ruby-on-Rails benchmarks and Sinatra stay meg-
amorphic before splitting is considered. HexaPdfSmall stays
megamorphic before splitting, even so the maximum cache
size is relatively small with only 11 targets. The minimally-
polymorphic benchmarks, not pictured here, all behave ho-
mogeneously, with a maximum of four targets before all
optimizations, reduced to two after eliminating duplicates,
and completely monomorphized after splitting. A closer look
at the distribution of receivers shows that the distribution
remains unchanged at any optimization stage, with at least
75% of calls being monomorphic only.

Observation 4. Splitting in combination with addressing tar-
get polymorphism is effective at monomorphizing polymorphic
call-sites. Only two benchmarks from our set still display poly-
morphism, with caches containing at most two targets. All
other benchmarks have been completely monomorphized.

Table 4. Eliminating target duplicates, in addition to split-
ting, reduces the maximum cache size. Both optimizations
together turn almost all caches monomorphic, even when
they held many targets initially.

Biggest cache size (number of targets)

Benchmark
before
all

optimisations

after
eliminating
duplicates

after
splitting

BlogRails 206 24 2
ChunkyCanvas* 15 2 1
ChunkyColor* 15 2 1

ChunkyDec 15 2 1
ERubiRails 206 24 2

HexaPdfSmall 20 11 1
LiquidCartParse 20 2 1

LiquidCartRender 20 5 1
LiquidMiddleware 18 2 1

LiquidParseAll 20 4 1
LiquidRenderBibs 20 7 1

MailBench 71 3 1
PsdColor 31 3 1

PsdCompose* 31 3 1
PsdImage* 31 3 1
PsdUtil* 31 3 1
Sinatra 84 16 1

ADConvert 8 2 1
ADLoadFile 7 2 1
DeltaBlue 4 3 1
PsychLoad 5 3 1
RedBlack 4 2 1

4.3 Splitting Transitions
There are many possible changes of lookup cache state after
splitting, but ideally it leads to a lower degree of polymor-
phism. Thus, our question is:

Research Question 5. What are the most frequent lookup
cache state transitions after splitting?

Hölzle et al. [9] stated that the aim of splitting is to mono-
morphize polymorphic call-sites. Indeed, Truffle’s heuristic
(see Section 2.3) will mark a method as candidate for splitting
as soon as a lookup cache gains a second entry.

Two cases are therefore possible:
– The clone’s cache contains the same target as the ori-
ginal, which means that the call-site would have re-
mained monomorphic if it had not been split, suggest-
ing the split that occurred was unnecessary;

– The clone’s cache contains a different target, which
means that if splitting had not been triggered, the
cache would have turned polymorphic.

Table 5 shows the frequency of these splitting transitions
for our benchmark set: it displays the number of splitting ac-
tions, and how splitting influenced the lookup cache state of
the split call-sites. Quite unexpectedly column four indicates
that 89% of splitting happens on monomorphic call-sites that
remain monomorphic with the same target after splitting,
which suggests over-splitting may have occurred. We in-
spected several of these cases manually and identified that
they result from recursive splitting (see Section 2.3).

Observation 5. The most common splitting outcome results
in the clone’s cache containing the same entry as the original
cache. In significantly fewer cases splitting prevented a cache

8

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Table 5. State transition of lookup caches for method call-
sites. The results indicate that 88.7% of splitting results in
call-sites having the same single entry as before the split,
which may indicate a too aggressive splitting strategy.

Cache entries
after splitting

(% of total number of splits)

Benchmark
Number
of splits Different Same

BlogRails 2163 14% 86%
ChunkyCanvas* 43 7% 93%
ChunkyColor* 42 7% 93%

ChunkyDec 42 7% 93%
ERubiRails 1851 15% 85%

HexaPdfSmall 498 9% 91%
LiquidCartParse 107 7% 93%

LiquidCartRender 207 8% 92%
LiquidMiddleware 114 10% 90%

LiquidParseAll 136 6% 94%
LiquidRenderBibs 191 12% 88%

MailBench 343 7% 93%
PsdColor 300 11% 89%

PsdCompose* 300 11% 89%
PsdImage* 300 11% 89%
PsdUtil* 300 11% 89%
Sinatra 297 10% 90%

ADConvert 236 11% 89%
ADLoadFile 175 11% 89%
DeltaBlue 78 28% 72%
PsychLoad 78 8% 92%
RedBlack 50 40% 60%

Acid 27 7% 93%
BinaryTrees 30 7% 93%

Bounce 27 7% 93%
CD 41 12% 88%

Fannkuch 27 7% 93%
Havlak 45 7% 93%

ImgDemoConv 30 7% 93%
ImgDemoSobel 27 7% 93%

Json 27 7% 93%
List 27 7% 93%

Mandelbrot 27 7% 93%
MatrixMultiply 31 6% 94%

NBody 28 7% 93%
NeuralNet 46 7% 93%
OptCarrot 66 12% 88%
Permute 28 7% 93%
Pidigits 27 7% 93%
Queens 28 7% 93%
Richards 29 7% 93%

Sieve 27 7% 93%
SpectralNorm 30 7% 93%

Storage 27 7% 93%
Towers 27 7% 93%

from turning polymorphic: this is the case when the clone’s
cache and the original cache contain different entries. As pre-
viously mentioned, the splitting strategy in TruffleRuby might
be overly aggressive.

4.4 Methods Versus Closures
Ruby provides both methods and closures to the developer
(see Section 2.4). While we have focused so far only on meth-
ods, this section analyses the call-site behavior of closures,
asking the question:

Research Question 6. Do the call-site behaviors of methods
and closures differ?

Table 6 summarizes the polymorphic behavior of closures
in our benchmarks. Columns 2 to 4 repeat the general met-
rics about methods already shown in Table 1. Columns 5
to 8 mirror these metrics for closures. The kCalls column
contains the total number of times a method or a closure

has been called. The Poly. calls column to the right of it
represents the fraction of these calls that are polymorphic
and megamorphic. The same structure applies to the Exec.
call-sites, representing the total number of method or closure
call-sites, and the Poly. call-sites column on its right.

Table 6.Around 96.5% of closure call-sites are monomorphic,
with ERubiRails being the least polymorphic benchmarkwith
2.1%, and Havlak the most polymorphic one with 8.5% of
polymorphic closure call-sites.

METHODS CLOSURES

Benchmark kCalls
Poly+
Mega.
calls

Exec.
call-
sites

Poly+
Mega.
call-
sites

kCalls
Poly+
Mega.
calls

Exec.
call-
sites

Poly.+
Mega
call-
sites

BlogRails 13,863 7.4% 52,361 2.3% 1,410 10.1% 10,026 2.3%
ChunkyCanvas* 11,323 0.0% 1,816 1.0% 3,133 26.0% 178 7.0%
ChunkyColor* 19 2.0% 1,790 1.0% 2 12.0% 175 6.0%

ChunkyDec 21 2.0% 1,809 1.2% 2 9.9% 177 6.2%
ERubiRails 12,309 5.4% 47,794 2.3% 1,100 5.3% 9,314 2.1%

HexaPdfSmall 31,246 7.4% 6,872 4.1% 3,237 2.3% 945 5.8%
LiquidCartParse 87 1.3% 3,065 1.9% 7 5.7% 272 7.0%

LiquidCartRender 236 5.5% 3,581 2.4% 14 5.0% 360 7.2%
LiquidMiddleware 70 1.4% 2,918 1.4% 6 6.2% 263 5.7%

LiquidParseAll 295 1.9% 3,127 2.2% 12 11.1% 284 7.0%
LiquidRenderBibs 385 23.4% 3,466 2.8% 34 7.7% 408 5.9%

MailBench 2,756 3.4% 5,414 3.6% 124 3.9% 628 4.1%
PsdColor 352 4.1% 6,668 1.9% 90 2.5% 923 3.5%

PsdCompose* 352 4.0% 6,678 2.0% 90 2.0% 925 4.0%
PsdImage* 5,509 0.0% 6,677 2.0% 1,934 0.0% 925 4.0%
PsdUtil* 351 4.0% 6,655 2.0% 90 2.0% 922 4.0%
Sinatra 172 6.9% 5,639 4.4% 23 7.9% 855 4.0%

ADConvert 371 7.9% 3,979 3.1% 31 4.4% 335 6.3%
ADLoadFile 171 13.2% 3,335 2.9% 14 6.6% 235 7.7%
DeltaBlue 13 6.4% 1,738 2.4% 2 13.5% 207 5.8%
PsychLoad 6,232 11.6% 2,412 1.9% 381 0.1% 217 6.9%
RedBlack 42,897 20.3% 1,774 2.9% 801 25.0% 145 6.2%

Acid 9 1.7% 1,445 0.7% 1 22.6% 130 6.9%
BinaryTrees 6,355 0.0% 1,474 0.7% 23 1.0% 136 6.6%

Bounce 16 0.9% 1,457 0.7% 6 4.4% 131 6.9%
CD 75,184 6.2% 1,772 0.7% 707 0.3% 146 8.2%

Fannkuch 10,864 0.0% 1,473 0.7% 1 22.6% 134 6.7%
Havlak 44,901 3.0% 1,710 0.7% 7,435 4.3% 176 8.5%

ImgDemoConv 3,417 0.0% 1,512 0.7% 130 0.2% 138 6.5%
ImgDemoSobel 3,806 0.0% 1,518 0.7% 217 0.1% 140 6.4%

Json 210 0.1% 1,584 0.6% 1 19.3% 130 6.9%
List 53 0.3% 1,457 0.7% 1 22.7% 129 7.0%

Mandelbrot 9 1.7% 1,437 0.7% 1 22.5% 129 6.2%
MatrixMultiply 100 0.1% 1,473 0.7% 3,444 0.0% 141 7.1%

NBody 9 1.6% 1,518 0.7% 1 24.1% 134 8.2%
NeuralNet 33,010 0.0% 1,602 0.7% 5,541 0.2% 199 6.0%
OptCarrot 9,242 0.0% 2,544 1.0% 4,561 47.4% 311 5.5%
Permute 40 0.4% 1,445 0.7% 6 3.7% 130 7.7%
Pidigits 97 0.2% 1,456 0.7% 9 2.4% 130 6.9%
Queens 23 0.6% 1,449 0.7% 10 11.4% 130 6.9%
Richards 1,553 0.0% 1,584 0.6% 76 86.8% 131 7.6%

Sieve 9 1.7% 1,440 0.7% 6 3.7% 130 6.9%
SpectralNorm 6,441 0.0% 1,479 0.7% 6,417 0.0% 141 7.8%

Storage 24 0.6% 1,449 0.7% 6 3.4% 130 6.9%
Towers 82 0.2% 1,456 0.7% 1 23.9% 129 7.8%

Method calls are much more frequent than closure calls,
by a factor of around 7 in all of our benchmarks. However
closure call-sites are also more likely to be polymorphic than
method call-sites, even though there are many fewer. The
only exceptions are the two Ruby-on-Rails benchmarks: ERu-
biRails, which has the fewest polymorphic closure call-sites
of the set, with 2.1% of closure call-sites being polymor-
phic, and BlogRails with 2.3% polymorphic closure call-sites.
Havlak ranks first with 8.5% of closure call-sites polymor-
phic. None of the benchmarks are minimally polymorphic if
considering polymorphism for closure call-sites.

9

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

With the most polymorphic benchmark having only 4.4%
of method call-sites being polymorphic, a slightly high pro-
portion of closure than method call-sites is polymorphic.
By default, TruffleRuby used to force the splitting of clo-

sures when a new closure was to be added to the lookup
cache. This hides the impact of splitting from our analysis.
Therefore, we disabled this option so that the splitting de-
cisions are only guided by Truffle’s heuristics (see Section
2.3), which are also used for methods. In this context, split-
induced monomorphization is still frequent and effective,
leading to a complete elimination of the polymorphism in
closure call-sites, as shown in the four last columns of Table
7.

Table 7. Splitting succeeds at completely monomorphizing
the existing polymorphic closure calls, in a similar fashion
to method calls.

METHODS CLOSURES
After

eliminating
duplicates

and splitting

Before splitting
(number of calls)

After Splitting
(% change)

Benchmark Poly. Mega. Poly. Mega. Poly. Mega.
BlogRails -100% -100% 142,222 224 -100% -100%

ChunkyCanvas* -100% -100% 2,505,980 0 -100% 0%
ChunkyColor* -100% -100% 230 0 -100% 0%

ChunkyDec -100% -100% 230 0 -100% 0%
ERubiRails -100% -100% 58,190 224 -100% -100%

HexaPdfSmall -100% -100% 75,669 0 -100% 0%
LiquidCartParse -100% -100% 411 0 -100% 0%

LiquidCartRender -100% -100% 710 0 -100% 0%
LiquidMiddleware -100% -100% 344 0 -100% 0%

LiquidParseAll -100% -100% 1,360 0 -100% 0%
LiquidRenderBibs -100% -100% 2,634 0 -100% 0%

MailBench -100% -100% 4,848 0 -100% 0%
PsdColor -100% -100% 2,209 0 -100% 0%

PsdCompose* -100% -100% 2,206 0 -100% 0%
PsdImage* -100% -100% 2,463 0 -100% 0%
PsdUtil* -100% -100% 2,205 0 -100% 0%
Sinatra -100% -100% 1,837 0 -100% 0%

ADConvert -100% 0% 1,366 0 -100% 0%
ADLoadFile -100% 0% 923 0 -100% 0%
DeltaBlue -100% 0% 268 0 -100% 0%
PsychLoad -100% 0% 257 0 -100% 0%
RedBlack -100% 0% 200,221 0 -100% 0%

Acid -100% 0% 223 0 -100% 0%
BinaryTrees -100% 0% 223 0 -100% 0%

Bounce -100% 0% 273 0 -100% 0%
CD -100% 0% 2,170 0 -100% 0%

Fannkuch -100% 0% 223 0 -100% 0%
Havlak -100% 0% 319,468 0 -100% 0%

ImgDemoConv -100% 0% 223 0 -100% 0%
ImgDemoSobel -100% 0% 223 0 -100% 0%

Json -100% 0% 223 0 -100% 0%
List -100% 0% 223 0 -100% 0%

Mandelbrot -100% 0% 221 0 -100% 0%
MatrixMultiply -100% 0% 971 0 -100% 0%

NBody -100% 0% 247 0 -100% 0%
NeuralNet -100% 0% 10,240 0 -100% 0%
OptCarrot -100% 0% 2,163,026 0 -100% 0%
Permute -100% 0% 225 0 -100% 0%
Pidigits -100% 0% 223 0 -100% 0%
Queens -100% 0% 1,109 0 -100% 0%
Richards -100% 0% 66,017 0 -100% 0%

Sieve -100% 0% 223 0 -100% 0%
SpectralNorm -100% 0% 1,433 0 -100% 0%

Storage -100% 0% 223 0 -100% 0%
Towers -100% 0% 238 0 -100% 0%

Observation 6. The polymorphic behavior of closures and
methods is similar, but methods calls are more frequent, and
closure calls tend to be slightly more polymorphic.

BasicObject

Symbol

0 3000000 6000000 9000000 12000000
Time (Call ID)

== , in initializable.rb:50:1:95

Figure 5.Mirroring pattern in ERubiRails. The plot shows
calls over time (Call ID). Calls with targets Symbol and Basic-
Object exhibit the same behavior, i.e., mirror each other.

4.5 Lookup Cache State Evolution Throughout
Execution

As we saw in the previous sections, the polymorphism of call-
sites is drastically reduced by eliminating target duplicates
and by splitting. However, our results indicate that there
may be over-splitting.
One source of polymorphism may be that an application

has a distinct initialization phase, where initialization and
setup code is executed. This may leave lookup cache entries
behind for types that are not used later on anymore. To
investigate more broadly, we ask the following question:

Research Question 7. What kind of behavioral patterns do
call-sites exhibit?

To answer this question, we analyze the behavior of our 51
most polymorphic benchmarks (see Tables 2 and 3) just after
having eliminated target duplicates in the cache. Splitting is
disabled, since it would fully monomorphize the call-sites.
We narrowed our investigation down to the call sites that
have target polymorphism and ignored call-sites that have
fewer than 10 calls. We plot the calls to the different targets
over time, which we derive from the line number in the
log file (see Section 3.2). The vertical black line delimits the
switch from bootstrap to application phase (see Section 3.2).
We can categorize them into three distinct call-site behavior
patterns. that repeat across our benchmarks.

Mirroring pattern. Different targets at a call-site may dis-
play similar behavior throughout execution. Figure 5 shows
an example for the ERubiRails benchmark, which renders an
ERB template. A call to an == method sees two targets. The
implementations in the Symbol and BasicObject classes are
called in a very similar pattern.

Phase behavior. Phase behavior is characterized by a vi-
sible change in the pattern over time. We distinguish here
two variants, behavior at the level of a single target and
behavior at the level of the call-site. Possible phase changes
include a distinct change in call frequency as well as changes
in which targets are called at a call-site.

10

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Array

String

0 100000 200000 300000
Time (Call ID)

nil_or_empty? , in substitutors.rb:448:1:37

Figure 6. Phase behavior for the Array target in ADConvert.
The frequency of calls to this target increases noticeably
about halfway through the benchmark.

Array

Truffle::VersionedArray

0 100000 200000 300000 400000
Time (Call ID)

[]= , in array.rb:1271:1:23

Figure 7. Initialization pattern. This is an extreme example
with a tiny number of calls to VersionedArray initially, after
which only Array is called.

Figure 6 shows an example for a call site with a distinct
change halfway through the execution: at this point the
frequency of calls on Array objects significantly increases.

Other call-sites may go from being monomorphic to poly-
morphic, or the other way around, i.e., only a single target
remains relevant after the phase change.

Initialization pattern. The Initialization pattern is a spe-
cific example of the Phase behavior pattern. In this pattern,
calls are made to certain call-targets at the beginning of exe-
cution until a certain distinct point is reached, after which
the behavior changes, for instance to use a different set of
targets. Figure 7 shows an extreme example where a tiny
number of calls is made to the VersionedArray class ini-
tially, after which all calls go to Array.

No apparent pattern. Some benchmarks have polymor-
phic call-sites that do not display any apparent pattern or
phases in their behavior. An example is shown in Figure
8. Here both targets have slightly different frequency and
timings, but do not divide the execution into clear phases or
exhibit clear patterns.

Observation 7. As others have observed [14, 15], some call-
sites exhibit an initialization pattern in our benchmarks. In
addition, we see patterns of mirrored behavior, phase behavior,
and call-sites without any apparent pattern.

Some call-sites exhibit several of these patterns at once.
This is the case for instance for the execute call-site in the
DeltaBlue benchmark shown in Figure 9. It displays partial

NilClass

String

50000 100000 150000
Time (Call ID)

nil_or_empty? , in list.rb:101:1:58

Figure 8. No Apparent pattern. This call-site in the ADLoad-
File benchmark displays no apparent pattern.

EditConstraint

EqualityConstraint

ScaleConstraint

9000 10000 11000 12000 13000
Time (Call ID)

execute , in deltablue.rb:47:1:26

Figure 9.Multiple patterns. This call-site in the DeltaBlue
benchmark displays several call-site behavior patterns at
once.

mirroring across the three targets and shows phase behavior,
switching halfway through.

4.6 Impact of Bootstrap
We can see in the plots of Section 4.5 that the bootstrap
process does not cause extra polymorphism for frequently
used call targets. However, these plots represent only hot
call-sites, which brings us to our next question:

Research Question 8. Does the bootstrap process of Truf-
fleRuby influence the degree of polymorphism in our bench-
mark set?

To answer this question, we first identify the call-sites
called during the bootstrap phase. If they are later called
during the application phase, we check whether the content
of their lookup caches differ. If this is the case, it means that
the bootstrap phase causes polymorphism.

In our benchmark set, the bootstrap phase is only having
minimal impact on the degree of polymorphism. Only four
call-sites see an increase of their cache size. However, it
concerns 51 of our benchmarks, especially the megamorphic
and polymorphic ones. Three of these call-sites see their
degree of polymorphism increased by one, which means that
one target was added in the cache during the bootstrap phase,
but not reused later during the application phase. These
call-sites are related to module loading and implicit type
conversion. One call-site sees its degree of polymorphism
increased by two; it is used to resolve classes in a polyglot
context.

11

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

In Ruby, class loading and initialization can happen on
demand. This blurs the boundaries between initialization
and computation phases and makes it harder to consistently
identify the switch between the two. Bootstrapping on the
other hand is finished once the use code starts executing.
However, the small amount of call-sites impacted by the
bootstrap phase suggest that one may need to look at a more
comprehensive initialization phase, too.

Observation 8. With only four call sites seeing their degree
of polymorphism increased, the loading of TruffleRuby’s core
libraries increases the degree of polymorphism only minimally
in our benchmark set.

4.7 Limitations
In this section, we discuss some limitations of our study.

Core library calls differentiation. Some core library
calls and builtins are not associated with a lexical location.
We discard these cases since we use the lexical location to
uniquely identify call-sites.

Splitting specializations. TruffleRuby splits method call-
sites once they turn polymorphic. However, methods are also
split when there are other types of polymorphic operations,
e.g., addition operators acting on integers and doubles, or
string operations seeing different string encodings. These
use-cases were outside the scope of our study as we consider
only call-site behavior, and are therefore ignored by our in-
strumentation. However, we confirmed that only a negligible
number of splitting operations are caused by these omitted
operations.

5 Insight and Recommendations
We analyzed a diverse set of Ruby applications including
large applications such as BlogRails and MailBench, as well
as medium-sized and smaller benchmarks, used both for re-
search and to optimize language implementations used in
production. We found that the majority of our benchmarks
display a low degree of polymorphism, with only 2% call-
sites being polymorphic, which is roughly in line with the
literature. However, we also see that our industrial bench-
marks display more polymorphic behavior, which has been
underrepresented in previous studies, and should be carefully
considered when composing benchmark sets.
We find that when the elimination of call target dupli-

cates is combined with splitting, all but a few call-sites were
monomorphized (see Section 4.2). However, our findings also
suggest that splitting may be too aggressive leading to un-
necessary method duplication. This is problematic, because
splitting has a run-time cost in terms of additional memory
used for the split methods, additional cost in lookups (since
split copies have uninitialized lookup caches) and profiling

of the split copies, as well as additional just-in-time compila-
tion costs, and thus, prolonged warmup. For large codebases,
this can be a performance issue for just-in-time compilation.

While we might expect splitting most frequently to mono-
morphize polymorphic call-sites or prevent call-sites from
turning polymorphic, it appears that most splitting is per-
formed on monomorphic call-sites, and leaves the lookup
cache in an identical state (see Section 4.3). Considering the
impact this may have on both performance and memory
consumption, this will require further analysis to identify
whether it is avoidable.

One possible starting point to approach this issue is to
investigate the evolution of call-site behavior and lookup
cache usage during execution, with splitting is disabled. We
identified three patterns across our polymorphic benchmarks
(see Section 4.5). Knowledge of execution patterns has been
used in previous research to guide optimizations [11], and
we argue that the call-site patterns identified here may help
guide the development of other call-site optimizations.

6 Related Work on Dynamic Program
Behavior

Our work focuses on the call-site behavior of Ruby appli-
cations. To the best of our knowledge, little work has pre-
viously investigated this aspect. The most closely related
work is by Åkerblom and Wrigstad [2], who measure poly-
morphism in Python programs. Similarly to our approach,
they measure the degree of receiver polymorphism (see Sec-
tion 4.1) and target polymorphism, which they refer to as
n-typeable. They also aim to guide language developers to
further optimize Python, but their focus is on type systems.
Our work investigates how polymorphism evolves at call-
sites, differences between method and closure calls, and the
impact of optimizations on these.
Several other works have investigated dynamism, which

inspires some of our methodology. Similar to the work by
Åkerblom et al. [1] on dynamism in Python programs, we
analyze the behavior of programs written in a dynamic lan-
guage using a custom, instrumented version of the runtime.
We also look at similar call-site behaviors. For instance,
Richards et al. [16] investigate the validity of common as-
sumptions about the dynamic behavior of JavaScript pro-
grams and notably show that call-site dynamism (i.e. poly-
morphism, as in different function bodies per call-site, see
Section 2.3 in this paper) is more frequent than is commonly
assumed. Theseworks however do not consider the evolution
of dynamism beyond the ‘startup vs. steady state’ dichotomy.
The impact of existing optimizations is also not considered.

Holkner and Harland [8] also when and how Python pro-
grams use the more dynamic, reflection-like features, also
distinguishing between startup and later run time. However,
they do not consider the evolution of call-site behavior.

12

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Sarimbekov et al. [17] analyzed call-site behavior for JVM
languages. While they included Ruby, they use microbench-
marks and a single larger application per language, and do
not analyze how call-site behavior evolves.

7 Conclusion and Future Work
We analyze the call-site behavior of a wide range of Ruby
applications, focusing on the state of the lookup caches and
how they are affected by optimizations at run time. Our re-
sults show that while most of our benchmarks are monomor-
phic, the larger ones, more representative of workloads of
real applications, show more polymorphic behavior. We can
confirm that lookup caches, splitting, and the elimination of
target duplication are highly effective in monomorphizing
call-sites. However, we also observe that splitting may be
applied too often.
Future optimizations may be informed by the three pat-

terns we found in the evolution of call-site behavior over
time. Specifically, we confirm the initialization pattern, but
also saw phased behavior. Furthermore, we saw mirror pat-
terns, suggesting that call-sites may exhibit correlated be-
haviors; this may be exploitable in the future. Other call-sites
displayed no immediately apparent behavior patterns.

We found that a slightly higher proportion of closure call-
sites is polymorphic compared to method call-sites. However,
at least in the case of TruffleRuby, we also noticed that the
currently used forced splitting may again be overly aggres-
sive, and a standard splitting strategy may suffice.

In future work, we want to investigate in more detail how
calls relate to each other. Traditional inlining and the work
of Flückiger et al. [6] show that calling context can be used to

enable optimizations, and also to reduce call overhead. Since
the performance of many large applications is dominated
by calls, it seems relevant to investigate further how call
relations can be exploited to reduce call overhead.
The patterns of call-site behavior we identified, such as

the phase behavior and the initialization patterns, may be
able to guide splitting to monomorphize call-sites without
over-splitting, thus reducing the associated memory and
execution overhead, currently a challenge for the warmup
behavior of just-in-time compilers on large codebases. Such
an analysis would ideally determine the perfect splitting for
applications and compare this to current heuristics.
Another aspect not currently taken into account is poly-

morphism originating from data flow rather than call rela-
tions. The behavior of objects and closures accessed through
arguments or fields at polymorphic call-sites have not been
studied or considered in splitting heuristics.
The effective monomorphization also opens new doors

for other run-time techniques that introduce polymorphism.
For instance, tracking whether objects are only accessible
by a single thread as part of the receiver type can introduce
polymorphism [5]. Similarly, one may use receiver types to
record data-race-related information for run-time race de-
tection. In both cases, the effectiveness of eliminating target
duplicates is essential to minimize overhead.

Acknowledgments
We thank Chris Seaton (Shopify) and Benoit Daloze (Oracle
Labs) for feedback on an early draft.
This work was supported by the Engineering and Physi-

cal Sciences Research Council (EP/V007165/1) and a Royal
Society Industry Fellowship (INF\R1\211001).

13

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

A Impact of Call-Site Optimizations on the
Amount of Polymorphic and
Megamorphic Calls - Full tables

Table 8. Full table displaying the impact of eliminating
target duplicates on polymorphism: CD does not experi-
ence target duplicates, but the other benchmarks considered
minimally-polymorphic see at least 50% of their polymorphic
calls monomorphized.

Number of calls After eliminating
target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 956,515 63,319 -48.8% -99.1%

ChunkyCanvas* 322 98 -80.0% -100.0%
ChunkyColor* 320 98 -79.0% -100.0%

ChunkyDec 322 98 -79.5% -100.0%
ERubiRails 626,535 40,699 -37.4% -98.6%

HexaPdfSmall 1,842,665 479,399 -21.7% -99.6%
LiquidCartParse 821 280 -73.3% -100.0%

LiquidCartRender 12,598 280 -84.1% -100.0%
LiquidMiddleware 747 251 -68.8% -100.0%

LiquidParseAll 5,369 280 -87.4% -100.0%
LiquidRenderBibs 89,866 280 -73.7% -100.0%

MailBench 81,886 12,697 -77.6% -100.0%
PsdColor 14,053 233 -53.1% -100.0%

PsdCompose* 14,053 233 -53.0% -100.0%
PsdImage* 14,062 233 -53.0% -100.0%
PsdUtil* 14,048 233 -53.0% -100.0%
Sinatra 7,909 3,911 -82.8% -94.4%

ADConvert 29,337 0 -58.3% 0.0%
ADLoadFile 22,654 0 -53.5% 0.0%
DeltaBlue 846 0 -33.7% 0.0%
PsychLoad 723,984 0 -85.7% 0.0%
RedBlack 8,718,802 0 -7.7% 0.0%

Acid 148 0 -81.1% 0.0%
BinaryTrees 148 0 -81.1% 0.0%

Bounce 149 0 -80.5% 0.0%
CD 4,638,337 0 -0.0% 0.0%

Fannkuch 148 0 -81.1% 0.0%
Havlak 1,344,909 0 -50.4% 0.0%

ImgDemoConv 149 0 -80.5% 0.0%
ImgDemoSobel 150 0 -80.0% 0.0%

Json 149 0 -80.5% 0.0%
List 148 0 -81.1% 0.0%

Mandelbrot 148 0 -81.1% 0.0%
MatrixMultiply 148 0 -81.1% 0.0%

NBody 148 0 -81.1% 0.0%
NeuralNet 190 0 -63.2% 0.0%
OptCarrot 3,477 0 -93.6% 0.0%
Permute 148 0 -81.1% 0.0%
Pidigits 148 0 -81.1% 0.0%
Queens 148 0 -81.1% 0.0%
Richards 148 0 -81.1% 0.0%

Sieve 148 0 -81.1% 0.0%
SpectralNorm 148 0 -81.1% 0.0%

Storage 149 0 -80.5% 0.0%
Towers 148 0 -81.1% 0.0%

Table 9. Full table displaying the impact of splitting on poly-
morphism: it fully addresses the remaining polymorphism
in minimally-polymorphic benchmarks.

Number of calls After splitting
Benchmark Poly. Mega. Poly. Mega.

Number
of splits

BlogRails 490,072 557 -100% -100% 2163
ChunkyCanvas* 66 0 -100% 0% 43
ChunkyColor* 66 0 -100% 0% 42

ChunkyDec 66 0 -100% 0% 42
ERubiRails 391,997 553 -100% -100% 1851

HexaPdfSmall 1,443,211 2,066 -100% -100% 498
LiquidCartParse 219 0 -100% 0% 107

LiquidCartRender 2,000 0 -100% 0% 207
LiquidMiddleware 233 0 -100% 0% 114

LiquidParseAll 679 0 -100% 0% 136
LiquidRenderBibs 23,633 0 -100% 0% 191

MailBench 18,322 0 -100% 0% 343
PsdColor 6,586 0 -100% 0% 300

PsdCompose* 6,586 0 -100% 0% 300
PsdImage* 6,588 0 -100% 0% 300
PsdUtil* 6,584 0 -100% 0% 300
Sinatra 1,362 220 -100% -100% 297

ADConvert 12,226 0 -100% 0% 236
ADLoadFile 10,525 0 -100% 0% 175
DeltaBlue 561 0 -100% 0% 78
PsychLoad 103,506 0 -100% 0% 78
RedBlack 8,043,472 0 -100% 0% 50

Acid 28 0 -100% 0% 27
BinaryTrees 28 0 -100% 0% 30

Bounce 29 0 -100% 0% 27
CD 4,638,217 0 -100% 0% 41

Fannkuch 28 0 -100% 0% 27
Havlak 666,933 0 -100% 0% 45

ImgDemoConv 29 0 -100% 0% 30
ImgDemoSobel 30 0 -100% 0% 27

Json 29 0 -100% 0% 27
List 28 0 -100% 0% 27

Mandelbrot 28 0 -100% 0% 27
MatrixMultiply 28 0 -100% 0% 31

NBody 28 0 -100% 0% 28
NeuralNet 70 0 -100% 0% 46
OptCarrot 221 0 -100% 0% 66
Permute 28 0 -100% 0% 28
Pidigits 28 0 -100% 0% 27
Queens 28 0 -100% 0% 28
Richards 28 0 -100% 0% 29

Sieve 28 0 -100% 0% 27
SpectralNorm 28 0 -100% 0% 30

Storage 29 0 -100% 0% 27
Towers 28 0 -100% 0% 27

14

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

B Impact of Call-Site Optimizations on the
Amount of Polymorphic and
Megamorphic Call-Sites - Full Tables

Table 10. Full table displaying the impact of eliminating
target duplicates in the cache on the amount of polymorphic
and megamorphic call-sites. This optimization is very effec-
tive and reduces at least 46.3% of polymorphic call-sites, up
to 87.7%. Almost all megamorphic call-sites are eliminated,
except in the four benchmarks with a higher amount of meg-
amorphic call-sites.

Number of call-sites After eliminating
target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 1,015 210 -69.8% -97.1%

ChunkyCanvas* 21 1 -86.0% -100.0%
ChunkyColor* 21 1 -86.0% -100.0%

ChunkyDec 21 1 -85.7% -100.0%
ERubiRails 887 210 -70.2% -97.1%

HexaPdfSmall 206 74 -78.6% -98.6%
LiquidCartParse 53 5 -84.9% -100.0%

LiquidCartRender 82 5 -80.5% -100.0%
LiquidMiddleware 38 2 -71.1% -100.0%

LiquidParseAll 65 5 -87.7% -100.0%
LiquidRenderBibs 93 5 -76.3% -100.0%

MailBench 163 34 -85.9% -100.0%
PsdColor 119 7 -73.1% -100.0%

PsdCompose* 119 7 -73.0% -100.0%
PsdImage* 119 7 -73.0% -100.0%
PsdUtil* 119 7 -73.0% -100.0%
Sinatra 201 46 -86.6% -95.7%

ADConvert 125 0 -80.0% 0.0%
ADLoadFile 96 0 -79.2% 0.0%
DeltaBlue 41 0 -46.3% 0.0%
PsychLoad 46 0 -87.0% 0.0%
RedBlack 51 0 -60.8% 0.0%

Acid 10 0 -80.0% 0.0%
BinaryTrees 10 0 -80.0% 0.0%

Bounce 10 0 -80.0% 0.0%
CD 13 0 -61.5% 0.0%

Fannkuch 10 0 -80.0% 0.0%
Havlak 12 0 -75.0% 0.0%

ImgDemoConv 10 0 -80.0% 0.0%
ImgDemoSobel 10 0 -80.0% 0.0%

Json 10 0 -80.0% 0.0%
List 10 0 -80.0% 0.0%

Mandelbrot 10 0 -80.0% 0.0%
MatrixMultiply 10 0 -80.0% 0.0%

NBody 10 0 -80.0% 0.0%
NeuralNet 11 0 -72.7% 0.0%
OptCarrot 26 0 -69.2% 0.0%
Permute 10 0 -80.0% 0.0%
Pidigits 10 0 -80.0% 0.0%
Queens 10 0 -80.0% 0.0%
Richards 10 0 -80.0% 0.0%

Sieve 10 0 -80.0% 0.0%
SpectralNorm 10 0 -80.0% 0.0%

Storage 10 0 -80.0% 0.0%
Towers 10 0 -80.0% 0.0%

Table 11. Splitting is very effective at reducing polymor-
phism: it fully addresses the remaining polymorphism and
megamorphism, with the notable exception of our two Ruby-
on-Rails benchmarks, where only a couple of polymorphic
call-sites remain.

Number of call-sites After splitting
Benchmark Poly. Mega. Poly. Mega.

Number
of splits

BlogRails 307 6 -99.3% -100% 2163
ChunkyCanvas* 3 0 -100.0% 0% 43
ChunkyColor* 3 0 -100.0% 0% 42

ChunkyDec 3 0 -100.0% 0% 42
ERubiRails 264 6 -99.6% -100% 1851

HexaPdfSmall 44 1 -100.0% -100% 498
LiquidCartParse 8 0 -100.0% 0% 107

LiquidCartRender 16 0 -100.0% 0% 207
LiquidMiddleware 11 0 -100.0% 0% 114

LiquidParseAll 8 0 -100.0% 0% 136
LiquidRenderBibs 22 0 -100.0% 0% 191

MailBench 23 0 -100.0% 0% 343
PsdColor 32 0 -100.0% 0% 300

PsdCompose* 32 0 -100.0% 0% 300
PsdImage* 32 0 -100.0% 0% 300
PsdUtil* 32 0 -100.0% 0% 300
Sinatra 27 2 -100.0% -100% 297

ADConvert 25 0 -100.0% 0% 236
ADLoadFile 20 0 -100.0% 0% 175
DeltaBlue 22 0 -100.0% 0% 78
PsychLoad 6 0 -100.0% 0% 78
RedBlack 20 0 -100.0% 0% 50

Acid 2 0 -100.0% 0% 27
BinaryTrees 2 0 -100.0% 0% 30

Bounce 2 0 -100.0% 0% 27
CD 5 0 -100.0% 0% 41

Fannkuch 2 0 -100.0% 0% 27
Havlak 3 0 -100.0% 0% 45

ImgDemoConv 2 0 -100.0% 0% 30
ImgDemoSobel 2 0 -100.0% 0% 27

Json 2 0 -100.0% 0% 27
List 2 0 -100.0% 0% 27

Mandelbrot 2 0 -100.0% 0% 27
MatrixMultiply 2 0 -100.0% 0% 31

NBody 2 0 -100.0% 0% 28
NeuralNet 3 0 -100.0% 0% 46
OptCarrot 8 0 -100.0% 0% 66
Permute 2 0 -100.0% 0% 28
Pidigits 2 0 -100.0% 0% 27
Queens 2 0 -100.0% 0% 28
Richards 2 0 -100.0% 0% 29

Sieve 2 0 -100.0% 0% 27
SpectralNorm 2 0 -100.0% 0% 30

Storage 2 0 -100.0% 0% 27
Towers 2 0 -100.0% 0% 27

15

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

References
[1] Beatrice Åkerblom, Jonathan Stendahl, Mattias Tumlin, and Tobias

Wrigstad. 2014. Tracing Dynamic Features in Python Programs. In Pro-
ceedings of the 11thWorking Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery,
New York, NY, USA, 292–295. https://doi.org/10.1145/2597073.2597103

[2] Beatrice Åkerblom and Tobias Wrigstad. 2015. Measuring Polymor-
phism in Python Programs. SIGPLAN Not. 51, 2 (oct 2015), 114–128.
https://doi.org/10.1145/2936313.2816717

[3] Michael Bächle and Paul Kirchberg. 2007. Ruby on Rails. IEEE software
24, 6 (2007), 105–108.

[4] Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan)
Wu, Aaron Patterson, Kevin Newton, and John Hawthorn. 2021. YJIT:
A Basic Block Versioning JIT Compiler for CRuby. In Proceedings of
the 13th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages (VMIL’21). Association for Computing Ma-
chinery, New York, NY, USA, 25–32. https://doi.org/10.1145/3486606.
3486781

[5] Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and
Erez Petrank. 2018. Parallelization of Dynamic Languages: Syn-
chronizing Built-in Collections. Proceedings of the ACM on Pro-
gramming Languages 2, OOPSLA (Nov. 2018), 108:1–108:30. https:
//doi.org/10.1145/3276478

[6] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain,
and Jan Vitek. 2020. Contextual Dispatch for Function Specialization.
Proc. ACM Program. Lang. 4, OOPSLA, Article 220 (nov 2020), 24 pages.
https://doi.org/10.1145/3428288

[7] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language
and its implementation. Addison-Wesley Longman Publishing Co., Inc.

[8] Alex Holkner and James Harland. 2009. Evaluating the Dynamic
Behaviour of Python Applications. In Proceedings of the Thirty-Second
Australasian Conference on Computer Science - Volume 91 (Wellington,
New Zealand) (ACSC ’09). Australian Computer Society, Inc., AUS,
19–28. https://doi.org/10.5555/1862659.1862665

[9] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing
dynamically-typed object-oriented languages with polymorphic in-
line caches. In European Conference on Object-Oriented Programming.
Springer, 21–38.

[10] Ross Ihaka and Robert Gentleman. 1996. R: a language for data analysis
and graphics. Journal of Computational and Graphical Statistics 5, 3
(1996), 299–314.

[11] Thomas Kistler and Michael Franz. 2003. Continuous program opti-
mization: A case study. ACM Transactions on Programming Languages
and Systems 25, 4 (July 2003), 500–548. https://doi.org/10.1145/778559.
778562

[12] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
Language Compiler Benchmarking—AreWe Fast Yet?. In Proceedings of
the 12th Symposium on Dynamic Languages (Amsterdam, Netherlands)
(DLS’16). ACM, 120–131. https://doi.org/10.1145/2989225.2989232

[13] Yukio Matsumoto and Kiju Ishituka. 2002. Ruby programming lan-
guage.

[14] Priya Nagpurkar. 2007. Analysis, Detection, and Exploitation of Phase
Behavior in Java Programs. Ph. D. Dissertation. University of California
Santa Barbara.

[15] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C.
Dulong. 2006. Detecting phases in parallel applications on shared
memory architectures. In Proceedings 20th IEEE International Parallel
& Distributed Processing Symposium. IEEE, Rhodes Island, Greece, 10
pp. https://doi.org/10.1109/IPDPS.2006.1639325

[16] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010.
An Analysis of the Dynamic Behavior of JavaScript Programs. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (Toronto, Ontario, Canada) (PLDI
’10). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/1806596.1806598

[17] Aibek Sarimbekov, Andrej Podzimek, Lubomir Bulej, Yudi Zheng,
Nathan Ricci, and Walter Binder. 2013. Characteristics of Dynamic
JVM Languages. In Proceedings of the 7th ACM Workshop on Virtual
Machines and Intermediate Languages (Indianapolis, Indiana, USA)
(VMIL ’13). Association for Computing Machinery, New York, NY,
USA, 11–20. https://doi.org/10.1145/2542142.2542144

[18] Robert W. Scheifler. 1977. An Analysis of Inline Substitution for a
Structured Programming Language. Commun. ACM 20, 9 (sep 1977),
647–654. https://doi.org/10.1145/359810.359830

[19] Chris Seaton, Benoit Daloze, Kevin Menard, Petr Chalupa, Brandon
Fish, and Duncan MacGregor. 2017. TruffleRuby—A High Performance
Implementation of the Ruby Programming Language.

[20] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Barcelona, Spain) (PLDI’17). ACM, 662–676. https:
//doi.org/10.1145/3062341.3062381

[21] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-
terpreters. In Proceedings of the 8th Dynamic Languages Symposium
(Tucson, Arizona, USA) (DLS’12). ACM, 73–82. https://doi.org/10.
1145/2384577.2384587

Received 2022-07-01; accepted 2022-09-16

16

https://doi.org/10.1145/2597073.2597103
https://doi.org/10.1145/2936313.2816717
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3276478
https://doi.org/10.1145/3276478
https://doi.org/10.1145/3428288
https://doi.org/10.5555/1862659.1862665
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1109/IPDPS.2006.1639325
https://doi.org/10.1145/1806596.1806598
https://doi.org/10.1145/2542142.2542144
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Terminology and Background
	2.1 TruffleRuby, Truffle, and Graal
	2.2 Terminology
	2.3 Call-Site-related Optimizations
	2.4 Methods and Closures in Ruby
	2.5 Call Optimization in TruffleRuby

	3 Methodology
	3.1 Selection of the Benchmark Set
	3.2 Behavior Monitoring and Analysis

	4 Results
	4.1 General Metrics of the Benchmarks
	4.2 Impact of the Existing Call-Site Optimizations on Call-Site Behavior
	4.3 Splitting Transitions
	4.4 Methods Versus Closures
	4.5 Lookup Cache State Evolution Throughout Execution
	4.6 Impact of Bootstrap
	4.7 Limitations

	5 Insight and Recommendations
	6 Related Work on Dynamic Program Behavior
	7 Conclusion and Future Work
	Acknowledgments
	A Impact of Call-Site Optimizations on the Amount of Polymorphic and Megamorphic Calls - Full tables
	B Impact of Call-Site Optimizations on the Amount of Polymorphic and Megamorphic Call-Sites - Full Tables
	References

